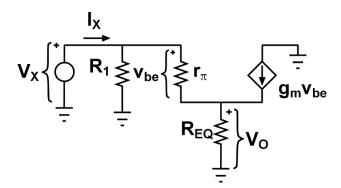

PEQUEÑA SEÑAL BJT

SOLUCIÓN

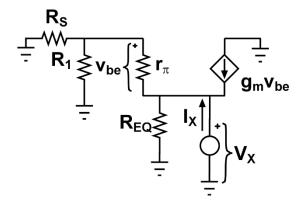
El circuito transformado a pequeña señal resulta:



Donde r_o es la resistencia que se incluye debido al efecto Early. Se puede observar en el circuito como tres resistencias están en paralelo, simplificándolo a:

Donde $R_{EQ}=R_2\|R_L\|r_o$. Si no incluimos efecto Early, r_o equivale a un circuito abierto y, por lo tanto, $R_{EQ}\big|_{r_o=\infty}=R_2\|R_L$. Además incluir efecto Early reduce la resistencia equivalente ya que $R_{EQ}< R_{EQ}\big|_{r_o=\infty}$, porque tres resistencias en paralelo equivalen a un resistencia menor que el equivalente de dos de esas resistencias. Los parámetros que me piden estudiar son:

• Impedancia de entrada. El circuito sería:


Dado que para la misma tensión V_x a la entrada, la corriente i_B será mayor con efecto Early porque la resistencia R_{EQ} es menor, la corriente $I_X = I_{R1} + i_B$ será mayor, y por lo tanto $R_{IN} = V_x/I_x$ es menor.

También se puede justificar a través de la expresión, que sería:

$$R_{IN} = \left(\frac{1}{R_1} + \frac{1}{r_{\pi} + (\beta + 1)R_{EQ}}\right)^{-1}$$

Lo que confirma que con efecto Early, al tener una R_{EQ} menor, es mayor el segundo sumando por lo que a la -1 la R_{IN} es menor.

• Impedancia de salida. El circuito sería:

En este circuito la R_L hay que cambiarla por un circuito abierto, por lo que incluyendo efecto Early $R_{EQ}=R_2\|r_o$, y sin efecto Early, $R_{EQ}\big|_{r_o=\infty}=R_2$. También se cumple que la resistencia equivalente es menor con efecto Early: $R_{EQ}< R_{EQ}\big|_{r_o=\infty}$.

Dado que para la misma tensión V_x a la salida, la corriente a través de la R_{EQ} será mayor con efecto Early porque R_{EQ} es menor, $I_x = I_{REQ}$ - (β +1) I_B será mayor, por lo que $R_{OUT} = V_x/I_x$ es menor.

También se puede justificar a través de la expresión, que sería:

$$R_{OUT} = \left(\frac{1}{R_{EO}} + \frac{(\beta + 1)}{R_1 ||R_S + r_{\pi}||}\right)^{-1}$$

Lo que confirma que con efecto Early, al tener una R_{EQ} menor, es mayor el primer sumando por lo que a la -1 la R_{OUT} es menor.

Dado que la ganancia viene dada por la expresión:

$$A_V = \frac{R_{IN}}{R_{IN} + R_S} A_{V,MAX} \frac{R_L}{R_L + R_{OUT}}$$

Reducir la impedancia de entrada juega en contra de aumentar la ganancia del circuito, pero reducir la impedancia de salida juega a favor.